随着GIS向三维领域的发展,数字城市三维建模日益成为数字城市研究的热点。传统的数字城市建模方法,主要是由航空 影像或卫星影像,配合航测获取的少量信息来重建三维场景。但是通过这种方式建立的 建筑物、场景模型工作量很大,效率 较低、精度不高,往往需要浏览分析大量地面拍摄的照片,进行方位及大概结构的分辨,不能够快速确认三维空间数据、精确 地建立数字城市模型。
利用多源空间信息数据遥感技术(RS)、地理信息系统(GIS)、全球定位系统(GPS)和道路、建筑、管线等 BIM 数据相结合,通过三维数字地球建设形成空间信息框架。通过这一空间框架技术,实现跨行业、跨区域、多维度的数据共享、分发和融合,为电信基础设施的设计与施工管理提供地形信息、城市资源环境信息、智能化辅助决策和三维可视化服务,形成了“管理-监测-评估-决策”的技术体系和示范系统,让电信基础设施建设更加系统与智能。
开发方案 包括服务端应用程序(GBWS)、服务端配置工具(BMCT)、客户端应用程序(BE)三个子系统,其分别包含了 GIS 的基础应用和BIM 的基础应用,将 GIS 和 BIM 有机的整合到一个系统中,从而实现,从天到地,从地到构件的立体三维化管理模式,上能整体把控全局,下能深入细节节点。
地质BIM三维建模软件
地质三维建模方法_
两种三维地质建模方法,一种是“自动逐层建模方法”,通过钻孔和剖面创建三维地质模型,另一种是“人工复杂层建模方法”,创建更复杂的三维地质模型。人工编辑的水文地质模型,结合地形数据、平面图、钻孔和剖面图。”
简单场地地质模型的建立一般采用自动多层建模方法。已知信息主要是钻孔和剖面。由于地层关系简单,软件可以自动快速建立模型。建模方法是:导入钻井数据,进行地质三维模型,可以通过设置建模参数(如缩窄生成方式)和输入剖面图数据生成。
“复杂层人工建模方法”主要应用于复杂场地的建模。由于地层条件复杂,软件算法无法完成快速建模。综合考虑各种测量资料,人工判断、修改,形成地层面(包括上、下、断、折、风化面)。最后形成三维地质体。在该建模方法中,已知信息主要包括DEM数据、轮廓数据、工作点平面图、剖面图和钻孔数据。在建模过程中要反映岩层的分布特征,灵活地进行编辑和修改。
利用通用的地质BIM显示应用软件,用户可以完成地质模型文件的可视化解释和一些简单的定性操作,满足一般简单情况的需要。对于复杂的要求,如地基基础、桩基、基坑、场地、隧道、桥梁、边坡等地质模型的分析与设计,必须采用基于地质模型API二次开发的专用软件。
地质BIM通用数据接口
地质BIM模型建立后,如何将其直接应用到后续的专业工作中?最简单的方法是输出通用数据接口供后续软件读取。在后续软件的应用过程中,一方面需要读取和显示地质三维体,另一方面需要获取各层的物理力学指标。因此,该界面应包括两部分:一部分是地质三维几何描述的通用格式,另一部分是与之相关的地层属性描述。
总结如下:
(1)地质BIM是整个BIM模型不可或缺的一部分。
(2)完整的地质三维解决方案包括四部分:地层建模、显示与应用、二次开发API、数据接口。
(3)钻孔和剖面数据可自动生成简单的定性三维模型。
(4)复杂的地质三维模型可以基于DEM、轮廓、钻孔、剖面、平面、平洞等数据手。
(5)通过通用的显示应用软件,实现地质三维的简单应用。
(6)地质三维体的简单连接可以通过阅读3DS、DXF和IFC等一般三维格式来实现。
(7)可通过地质BIM二次开发API完成复杂应用功能。